ON-ROAD MEASUREMENT OF EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS: IMPACTS OF FLEET TURNOVER AND ARB'S DRAYAGE TRUCK REGULATION

Robert Harley (harley@ce.berkeley.edu)

Department of Civil and Environmental Engineering University of California, Berkeley

Acknowledgments

- UC Berkeley: Chelsea Preble, Tim Dallmann
- Lawrence Berkeley National Lab: Tom Kirchstetter
- Aerosol Dynamics: Nathan Kreisberg, Susanne Hering
- Research funding:
 - California Air Resources Board (Contract no. 09-340)
 - National Science Foundation Fellowship (Chelsea Preble)
 - Thanks also to ARB staff (esp. Chandan Misra) and BAAQMD

Introduction

- Major efforts underway to reduce diesel emissions:
 - stringent emission standards for new engines
 - accelerated retrofit/replacement of California engines:
 - Widespread PM emission control by 2016
 - Near universal NO_x emission control by 2023
 - highly accelerated retrofit/replacement of trucks used for short-haul trips ("drayage") to/from ports and rail yards

Heavy-Duty Diesel Emission Standards

(For New On-Road Truck Engines by Model Year)

Diesel Particle Filter & Selective Catalytic Reduction (DPF) (SCR)

Used on 2007 & newer engines (DPF retrofits possible on older engines)

PM from engine exhaust trapped on filter

NO₂ oxidizes trapped carbon particles (this helps to regenerate the filter)

Used on 2010 & newer engines (SCR is difficult to add as a retrofit)

DEF = mixture of urea + water Urea converted to $2 \text{ NH}_3 + \text{CO}_2$

NH₃ reacts with NO_x to form N₂

California Drayage Truck Regulation

(Based on Engine Model Year)

Deadline	Engine Banned	OK if Retrofit with Diesel Particle Filter (DPF)	Engine OK as is
Jan 2010	1993 & older	1994-2003	2004 & newer
Jan 2012	1993 & older	1994-2004	2005 & newer
Jan 2013	1993 & older	1994-2006	2007 & newer
Jan 2014	2006 & older	none	2007 & newer

Present study features measurements of in-use emissions from drayage trucks at the Port of Oakland in Nov 2011 and Mar 2013 (plus baseline data from Nov 2009)

Port of Oakland Field Measurements

- Sample exhaust plumes of individual port trucks:
 - NO_x and NO₂ (by difference, NO_x NO, using two analyzers)
 - Black carbon (BC by aethalometer light absorption)
 - Ultrafine particles (UFP by condensation particle counter)
 - Particle size distribution (FMPS = Fast Mobility Particle Sizer)
 - CO₂ (by infrared absorption)
- Emission factors calculated by carbon balance
- License plate images used to obtain info about each truck
 - engine make & model year, retrofit control devices

Emission Factor Calculation

NO_x & BC Emission Factor Repeatability

(Repeat Sampling of Emissions from 207 Trucks)

R² values not as high for NO₂ (0.60) and UFP (0.52)

PN Emission Factor Repeatability

(Particle Number Emissions via Different Methods)

Port Truck Engine Age Distribution

Black Carbon Emission Factors

Decreased by 76 ± 22% between 2009 and 2013

Black Carbon Emission Factors

By DPF Retrofit Installer (Blue) or Engine Manufacturer (Red)

Black Carbon Emission Factors

Box-Whisker Plots by Engine Model Year

Particle Number Emission Factors

Particle Number Size Distributions

Measured Using FMPS

NO_x Emission Factors

Decreased by 53 ± 8% between 2009 and 2013

NO₂ Emfacs and NO₂/NO_x Ratio

High-Emitter Contributions to BC & NO_x

Summary of Key Findings

- Between Nov 2009 and Mar 2013, fleet-avg emission factors for Port trucks changed as follows:
 - BC decreased by 76 ± 22%
 - NO_x decreased by 53 ± 8%
 - NO₂ increased from 3 to 18% of total NO_x emissions
 - These emission changes were rapid compared to what would have been achieved based on natural fleet turnover alone
- Use of DPF led to decreases in particle number emissions
 - Some trucks measured in 2011 (2004-06 engines) had no DPF
 - Higher PN emission factors compared to DPF-equipped trucks

Discussion

- Further Plans for Measuring Diesel Truck Emissions
 - Caldecott Tunnel: summers 2014, 2015, 2017 (contract 12-315)
 - Port of Oakland: summer 2015
- Mitigating DPF-Related Increase in NO₂ Emissions
 - SCR for NO_x control helpful in reducing primary NO₂ emissions
- Pros and Cons of DPF Retrofits vs. Truck Replacement
- How Will Truck Owners Comply with Truck & Bus Rule?
 - Insights based on what we saw at Port of Oakland

Pros and Cons of DPF Retrofits

ADVANTAGES

- Cost effectiveness in achieving primary PM emission reductions
- Old truck is fixed rather than exported, leading to global as well as local AQ improvement

DISADVANTAGES

- DPF does not help to control NO_x emissions
- Retrofits of older trucks with higher baseline NO_x emissions lead to larger & undesired increases in primary NO₂ emissions

Port of Los Angeles/Long Beach did wholesale replacement of drayage truck fleet (paid for by container fee imposed on shippers)

Port of Oakland saw a significant number of DPF retrofits on 1994-2003 engines

Truck and Bus Rule Compliance Strategy: Purchase Used Trucks, 2007-2009 Engines

Summary of Key Findings

- Between Nov 2009 and Mar 2013, fleet-avg emission factors for Port trucks changed as follows:
 - BC decreased by 76 ± 22%
 - NO_x decreased by 53 ± 8%
 - NO₂ increased from 3 to 18% of total NO_x emissions
 - These emission changes were rapid compared to what would have been achieved based on natural fleet turnover alone
- Use of DPF led to decreases in particle number emissions
 - Some trucks measured in 2011 (2004-06 engines) had no DPF
 - Higher PN emission factors compared to DPF-equipped trucks